Blog

Standardizing machine learning on MedTech sector – Expert’s insights

Project timeline:
months
Service areas:
No items found.
Written by
Teija Tulinen
Innokas content creator

How to standardize something that develops at an exceptionally fast pace? AI and Machine Learning (ML) in the healthcare sector has been a hot topic for a couple of years and there is as much concern as there is excitement over the advancing technology. Innokas Medical’s CTO is part of AG SNAIG (Software Network and Artificial Intelligence advisory Group), an international group that monitors and analyses available information from outside sources and advises the IEC Technical Committee 62 on Artificial Intelligence (AI) and connected topics; he has been interviewed about the current state of affairs. 

“There are no specific AI/ML standards in effect at the present in HealthTech,” says Innokas Medical’s CTO Antti Kaltiainen when asked about the situation with machine learning. “For now, there is healthcare AI/ML draft guidance as well as regulation from other sectors. Additionally, as machine learning based solutions are software, they are placed under software standard; in practice, they should comply with the current state-of-art in software IEC 62304 and IEC 82304-1 and other related standards and guidance in place,” he continues. 

Even so, the work to make specific regulations for machine learning is underway all over the world. The EU AI Act is set to become the world's first comprehensive legal framework for artificial intelligence, and the Council is looking to reach an agreement on the final form of the law by the end of this year. “Its primary purpose will be to ensure that the use of AI is both responsible and ethical, but it has also been said to have contradictions with some existing healthcare standardization,” Antti specifies.  

The role of Advisory groups comprised of Experts

Due to the ongoing implementation of regulations and standards, expert groups have been established to advise the standard setting bodies. These experts bring their knowledge and expertise in their respective fields and offer valuable guidance to the standardization process. “In practice, we study papers and international publications on the topic and discuss how AI risks are managed in healthcare sector at the moment,” Antti defines Software Network and Artificial Intelligence advisory Group he is in. 

AI regulatory challenges

When asked about the remarkable challenges the group faces, Antti underlines that the most particular challenge at the moment is that machine learning develops significantly faster than studies about it are being done and published. Additionally, some private companies release no information on how their models work. Some of the information provided is also said to be so complex anyone would have trouble understanding it. “Monitoring and regulation are always behind the development, but that is especially true in this case”, says Antti.

A specific example of a challenge would be the prevalence of “black box” type of machine learning software; a software that gives an answer without showing how it came up with that answer. “One way to approach black box AI would be Explainable AI, especially in the healthcare sector. Practically it would mean that the software needs to showcase how it made a conclusion, as well as the circumstances where it would have given a different answer,” Antti elaborates. 

AI concerns and compliance

One of the biggest concerns is that AI learns independently without human intervention, such as by continuously updating its database. Antti reminds that if a software that utilizes machine learning is qualified as a medical device (software), any changes to it need to go through thorough verification and validation, and very likely a notified body inspection. “Generally, medical software and equipment are “frozen” so to speak. Practically, the machine does not learn by itself even though the database it pulls from is updated. Though, this also presents a different challenge and concern, as especially old software needs to have its data updated to avoid becoming obsolete. This has also been a major topic of discussion in standardization.” There is also an existing draft framework published by FDA on how to cope with changes in a safe way.

AI/ML applications in healthcare at the present

Right now, probably the most widespread ML application area in healthcare sector is image recognition ML that can be used as a decision support tool for medical personnel. “At this point it is generally agreed that machine learning solutions should not be given authority over major decisions. They should only showcase their findings so that an expert can make the final decision; it’s like a digital colleague,” Antti concludes. Time will tell how machine learning solutions will develop from this point on. After all, a lot has already happened in a very short time.  

If you would like an audience with Innokas Medical's AI/ML experts, through this link you can explore our software services. You may also suggest a free meeting through the contact form.

Lead Magnet: The 101 of medical technology innovation
Download

Ask more about this project

Innokas highlights

Here you can find more of our latest news and insights in this category.

Innokas sustainability report launch

Read more

Introducing Valter Ritso, the new Director of Operations and Leadership team member at Innokas

Read more

Innokas Medical Rebrands as Innokas – Paving the Way for Growth and Innovation

Read more

Innokas highlights

Here you can find more of our latest news, tips and insights.

Getting the best return from prototyping

Read more

Efficient production transfer between factories

Read more

Why contract manufacturing?

Read more

How to find the elusive healthcare-certified software developer?

Read more

Innokas highlights

Here you can find more of our latest news and insights.

Case Terveystalo – Innokas software team helps develop medical software expertise

Read more

Case Nexstim – Familiarity with the sector and flexible operation gives a competitive edge

Read more

Case UKK Terveyspalvelut – Problem-solving skills and customer-oriented operation

Read more

Case MEGIN – Functional brain mapping by solutions based on magnetoencephalography technology

Read more

Innokas highlights

Here you can find more of our insights, news and tips.

No one builds alone – Contract manufacturing took the spotlight at Alihankinta subcontracting fair

Read more

Innokas challenges design thinkers to integrate circular design in healthcare

Read more

Arab Health 2024 – Our take and review

Read more

Innokas highlights

Here you can find more of our insights, news and tips.

Importance of hobbies in work-life balance – Insights from a Software Engineer

Read more

Europe's best – Innokas Medicals senior software engineer heading to Euroskills competition

Read more

Hire an International Student Campaign – Meet Ondra

Read more

Tomi Hugg is the new Director of Design Services at Innokas

Read more
Siberian husky sled running in a snowy environment. Innokas brand green glass theme. Background.

Let's get started!

Contact us and find out what we can do for you.

Contact us